

Using Circuit Modeling to Simulate Large Scale, Multi-Cellular, Biological Pathways

June 25, 2004

Richard L. Schiek & Elebeoba E. May Department of Computation Sciences

Outline

- Biological Circuits What are they?
- Implementation and Modeling Approach
- Metabolic and Genetic Coupling
- Bacterial Systems
- Tissue Differentiation Systems
- Future Directions

At the biochemical level cells are characterized by:

- Many different chemical species (DNA, RNA, enzymes, proteins, ...)
- Many different reaction mechanisms
 (kinetic, enzymatic, promoters, repressors, ...)

Glucose metabolism in Escherichia coli:

- 436 chemical species
- 720 reactions
 - J. Edwards & B. Palsson, Proc. Nat. Acad. Sci., 97 (2000)

E. Coli Metabolism Map, Systems Biology Research Group, UCSD, http://gcrg.ucsd.edu

- Mechanism graphs were built to better understand the complexity.
- Network or circuit analysis approach is logical.

Simplified Genetic Switch

Simplified Genetic Switch

Two basic approaches:

- 1. Assume system is well mixed.
- 2. Describe reactions with differential equations.
- 3. Integrate species concentrations forward in time.

Neglects network information.

McAdams, H. & Shapiro, L., *Science*, 269 (1995)
McAdams, H. & Arkin, *Annu. Rev. Biophysics* (1998)
von Dassow *et. al.*, *Nature*, 406 (2000)
A. Arkin, *IEEE Bioinformatics Conf.* August (2003)
BioSpice Community.

- Assume nodes are well mixed.
- 2. Describe reactions with differential equations.
- 3. Propagate concentrations only along *wires* to the nodes.
- 4. Integrate species concentrations and fluxes forward in time.

Uses network information because hierarchy is useful.

Electrical Domain Biochemical Domain

Charge	Mass
Current	Rate of mass change
Voltage	Concentration
Kirchoff's Voltage Law	Stoichiometry
Kirchoff's Current Law	Conservation of Mass

Cellular machinery can be modeled by charge sources/sinks and behavioral devices.

Electrical Domain Biochemical Domain

Charge	Mass
Current	Rate of mass change
Voltage	Concentration
Kirchoff's Voltage Law	Stoichiometry
Kirchoff's Current Law	Conservation of Mass

$$2 H_2 + O_2 \rightarrow 2 H_2O$$

 $2 H_2O \rightarrow 2 H_2 + O_2$

Cellular machinery can be modeled by charge sources/sinks and behavioral devices.

Goal: Large scale biological circuit simulation

Approach:

Use existing biological databases to develop whole cell circuits (metabolic, genetic, signal transduction ...)

Couple cells in a comment environment to study multi-cell effects (culture growth, tissue development, synergistic functionality, ...)

Metabolic and Genetic Coupling

Metabolic pathways translate directly into reaction networks.

Genetic control of the metabolic pathways is modeled as a binary network, or truth table.

Hybrid modeling of both the metabolic network and its associated genetic control is new and this is one of the first efforts in this field.

Metabolic and Genetic Coupling

Bacterial Systems

To simulate entire cell systems an automated method was created to convert public databases into circuits.

Bacterial Systems

- E. coli K-12 data.
- Approximately 8350 circuit unknowns.
- Serial and Parallel simulations.
- Model verification underway.

Tissue Differentiation Systems

- To simulate and understand how groups of cells interact, one should simulate many cell connected by a diffusive environment.
- Implemented a Diffusion PDE device in Xyce and with Trilinos/Entero to couple many cells in one common environment.
- Target application is cellular differentiation.

Cell to Cell interactions are limited by diffusion.

Tissue Differentiation Systems

Tissue Differentiation Systems

Cellular differentiation occurs when neighboring cells influence future development.

If this cell secretes a hormone, then...

these cells may develop into a different type of tissue (e.g. an artery wall or nerve cell)

In a growing Drosophila larva, a series of bands develop which later develop into different tissue types.

Similar processes occur in humans as cells turn into skin, nerve, muscle tissue.

Cells develop into two types

- wg expressing and
- hh expressing

Promotes Reaction

Inhibits Reaction

wg expressing

- **Promotes Reaction**
- **Inhibits Reaction**

hh expressing

- Promotes Reaction
- Inhibits Reaction

- Simulated a culture of 676 cells (26 x 26 grid)
- Applied a WG concentration gradient of 50%
- Two dimensional, full diffusion model joins cells

Two layers of hh expressing cells surround a layer of wg expressing cells leading to tissue differentiation.

Future Directions

Unlike electrical circuits, biological circuits:

- Physical parameters are difficult to measure.
- Circuit connections may not be well understood.
- System architecture is not obvious.

Need to focus on:

- Parameter studies and parameter sensitivity analysis.
- Network stability studies.
- Fundamental block studies.

